IEC 61850 Standard for Power System Communications
Basics, Benefits, and Status

Eric A. Udren
Quanta Technology, LLC
Pittsburgh, PA

Presentation to IEEE PES Boston Section Meeting
Needham, MA
February 18, 2014

eudren@quanta-technology.com (412) 596-6959

Goals of substation data communications

Substation LAN (local area network)
- Lack of standard intervendor communications was a problem for decades.
- **Goal 1:** Gather up relay data for SCADA & local operators - phase out RTU & local discrete display/control devices.
- **Goal 2:** Access relay & IED operational & non-operational data for many business purposes.
- **Goal 3:** Replace wired control schemes with relays and data communications LANs.
- **Goal 4:** Replace switchyard wiring to primary apparatus and instrument transformers with optical fiber LANs.
- **Goal 5:** Collect and concentrate data for WAMPAC.

Substation communications for enterprise information – reliability & economic benefits

- Planning & models
- Control centers - EMS & SCADA
- Management Dashboard
- Maintenance
- Asset Management
- Protection & Control Engineering & models

Enterprise WAN with firewalls & push servers
Integrate relay data communications to the enterprise

Substation LAN

Databases & back office applications for organizational users

Relay meas. & control over Ethernet LAN

Goal 3: Replace control wiring with messages on data networks.
- Substations & systems with IEC 61850 GOOSE messaging on redundant optical Ethernet LANs in service.
- Carry status & control, e.g. tripping & lockout.
- Logic in relays exchange messages to replace wires, control switches, lockout switches.
- Dramatic wiring reduction in the station.
- Can be faster than wiring.
Why Ethernet?

- **Important** – Ethernet networks carry any combination of mixed traffic types, protocols, services...
- Network tools to manage & prioritize mixed traffic.
- Modern Ethernet switches end old concerns about collisions and non-deterministic timing (but watch traffic volume!)
- New wide area transport with quality of service (QoS) prioritization.
- Extra network capacity always getting cheaper.
- Development of Ethernet based IT is crowding out other comms – serial now; TDM WAN will be next!

IEC 61850 - Communication networks and systems for power utility automation

- Edition 2, 2012 and new parts – 36 in all and still growing...
- Server-client design for Ethernet networks.
- Application layers for utility system application.
- High speed protection, control, and data streaming services
- System-wide data and control services and methods.
- Now the single international standard for power system communications.
- Recognized by DOE, NIST as a Smart Grid communications backbone.

What is IEC 61850?

- Ethernet based standard data communications application modeling & protocol structure with services and models aimed at utility protection and control requirements:
 - Relay/IED measurement, status, control exchanges with substation hosts – RTUs, concentrators, HMIs, enterprise – client-server objects.
 - High-speed status & control over LAN to eliminate control wiring – GOOSE messaging.
 - Switchyard/switchgear data acquisition and apparatus control – sampled values (some call it process bus).
 - Services for reporting, configuration, file transfer, time synch.
 - Standardized configuration process for substation or system IEDs - system configuration language (SCL).
 - New wide-area GOOSE and sampled value/synchrophasor services.
- Vision of a complete solution to replace diverse protocols and communications systems.

IEC 61850 is more than a protocol

- A power system P&C architecture.
- A modeling of applications and their exchanges.
- Multiple services, comply with many critical specifications – big development effort.
Wiring reduction

IEC 61850 aims to get rid of almost all wiring for protection, control, automation, and data gathering.

- Ethernet on optical fibers
- Standardized object models, point descriptions
- Integrated P&C system using fiber optic network cables

Conventional point to point wiring

- The wiring is gone, but what happened to the complex functionality?
- Where are the test switches and maintenance check points?

IEC 61850 as multivendor standard

- Aims for integration of multiple vendors’ devices.
- Each product has its own list of implemented services and features.
 - Conformance — a product is tested to validate that claimed (not all) services conform to specs.
 - Vendor pays for DNV KEMA, TÜV SÜD, or similar approved-lab certificate.
 - Interoperability — two or more products actually exchange information (working on certification process).
 - Vendor creative compliance, generic hand-map modeling shortcuts, standard interpretation. Will products actually interoperate? Plan to test and debug.
 - Performance — a system of products performs the application properly (no certification yet).

IEC 61850 server-client object services

- Much the standard (Parts 7-1, -2, -3, -4; new 7-5, new applications) describes power system object modeling structure and hierarchy.
- Defines objects for communications of measurements, status, control points, configuration services.
- Object modeling for substations is built on MMS application layer and Ethernet (Part 8-1).
- In general, relays and IEDs are servers; host computers and systems are clients.
- Products have 61850-specified data sharing function models –configuration easier than manual point maps (System Configuration Language (SCL), Part 6).
IC 61850 is growing

- IC 61850 Edition 1 – 1700 pages
- IC 61850 Edition 2
 - International application – improved models
 - Expanded structure
 - Better clarity
 - TISSUES (bugs) cleared
 - New practical features
 - New application domains
 - Products not out yet...

IC 61850 Edition 1 Documents

<table>
<thead>
<tr>
<th>System Aspects</th>
<th>Data and Services Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 1: Introduction and Overview</td>
<td>Part 7-4: Compatible Logical Node Classes and Data Classes</td>
</tr>
<tr>
<td>Part 2: Glossary</td>
<td>Part 7-3: Common Data Classes</td>
</tr>
<tr>
<td>Part 3: General Requirements</td>
<td>Part 7-2: Abstract Communication Services Interface (ACSI)</td>
</tr>
<tr>
<td>Part 4: System & Project Management</td>
<td>Part 7-1: Principles and Models</td>
</tr>
<tr>
<td>Part 5: Comms. Requirements for Functions and Device Models</td>
<td>Configuration</td>
</tr>
<tr>
<td>Part 6: Configuration Description Language for Communication in Electrical Substations</td>
<td>Mapping to Ethernet</td>
</tr>
<tr>
<td>Test</td>
<td>Part 8-1: Mapping to MMS and ISO 8802-3 (Ethernet)</td>
</tr>
<tr>
<td>Part 10: Conformance Testing</td>
<td>Part 9-2: Sampled Values over ISO 8802-3</td>
</tr>
</tbody>
</table>

9-2 LE: UCA Implementation Agreement for merging units in switchyards (LE = Lite Edition)

What is new in Edition 2 of existing parts?

- Clarifications and corrections (TISSUES)
- Modeling
 - Power Quality
 - Statistical evaluation of information
 - New models for mechanical equipment and measurements of non-electrical quantities
- New features for testing support
- Support for exchange of engineering information for configuration across projects and between facilities
- Redundancy – possibility to have IEDs with dual connections
Testing improvements

- Edition 1 required expedient user construction of testing facilities!
- Mirroring/feeding back control information
- Isolation of functions in service
- Interlocking test methods

IEC 61850 – new parts

- IEC 61850-7-410 – Hydroelectric power plants – Communication for monitoring and control
- IEC 61850-7-420 – Communication Systems for Distributed Energy Resources (DER)
- IEC 61850-7-500 /-7-510 (Technical Reports)
 - Explains how to use the concepts of IEC 61850 to model applications
- IEC 61400-25-x – Communications for monitoring and control of wind power plants.

Further topics under development

- Part 100 - Methods for functional testing in IEC 61850 based systems
- Modeling of user-programmed logic within IEDs
 - Goal is to support design of distributed logic
 - Based on IEC 61499 function block language
- Part 7-10- web based IEC 61850 models
 - More consistent implementations than those from programmers reading paper documents.
- Configuration management of IEC 61850 based systems

61850-90-1, 90-2, and 90-3

- 90-1: Interstation GOOSE communications – Chapter 5
- 90-2: Using IEC 61850 for the communication between substations and control centers – in development.
- 90-3: Condition monitoring of primary power apparatus – communications & asset management requirements:
 - Transformers, LTCs
 - GIS
 - Lines, UG cables
 - Sta. batteries
90-4 Ethernet Network Engineering Guidelines

- Substation topology and physical locations of IEDs
- Protection and control application
- Logical data flows and traffic patterns
- Latency requirements for different types of traffic
- Redundancy and resiliency
- Reliability, availability, maintainability
- Time synchronization and accuracy
- Network management
- Configuration & addresses
- Environmental issues
- EMI immunity
- Form factor
- Physical media
- Remote connectivity
- Cyber security
- Upgradeability
- Testing
- Cost

Under development - 90-12 Wide Area (WAN) Network Engineering Guidelines

Smart Grid integration with 61850

- 90-5: Synchrophasor transport according to IEEE C37.118 (more later in presentation)
- 90-6: Using IEC 61850 for distribution automation
- 90-7: IEC 61850 object models for photovoltaic, storage and other DER inverters
- 90-8: IEC 61850 object models for electrical vehicles
- 90-9: IEC 61850 object models for battery storage systems
- 90-10 – DER scheduling
- 90-11 – Electric vehicle integration
- 90-13 – Steam and gas turbines
- 90-14 – FACTS devices

Mappings for gateways

- IEC 61850-80-1 – same for IEC 60870-5-101/-104, an IEC flavor of DNP3.

Next...stacks, GOOSE, Sampled Values...

OSI 7-Layer Communications Stack

<table>
<thead>
<tr>
<th>Layer</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Application</td>
<td>Meaning of the data (utility user specifics)</td>
</tr>
<tr>
<td>6</td>
<td>Presentation</td>
<td>Building blocks of data and encryption for security</td>
</tr>
<tr>
<td>5</td>
<td>Session</td>
<td>Opening and closing specific communications paths</td>
</tr>
<tr>
<td>4</td>
<td>Transport</td>
<td>Error checking</td>
</tr>
<tr>
<td>3</td>
<td>Network</td>
<td>Determining the data paths within the network</td>
</tr>
<tr>
<td>2</td>
<td>Data Link</td>
<td>Data transmission, source and destination, checksum</td>
</tr>
<tr>
<td>1</td>
<td>Physical</td>
<td>Signal levels, connections, wires, fiber, wireless</td>
</tr>
</tbody>
</table>
Role of IEC 61850 GOOSE messaging

Back to **Goal 3: Replace control wiring with network messages.**

- GOOSE messaging plus *programmable logic in relays* and IEDs replaces panel wiring and controls.
- **Benefits** – panel and floor space reduction, less equipment overall, continuous monitoring and management of the system design (“wiring”), big potential wiring cost savings.
- Works with other IEC 61850 services, or without them.

61850 GOOSE messaging

- **Generic Object Oriented Substation Event.**
- A relay or IED can send a sequence of control or status points to replace individual signals on dedicated wires.
- Not just a single message to request remote action...
- A process to *continuously* send intended state from publishing (transmitting) IED – like a contact that picks up and drops out at critical moments.
- Even if a subscribing (receiving) relay is just powered up, it can get updated status it needs – as wires would do.
Publisher-subscriber exchange

- Each relay publishes a continuous stream of GOOSE packets with status/control points that other IEDs might need.
- Any other relay or IED can subscribe to (view contents from) the streams it needs.
- Publisher just talks – does not know who subscribers are, or whether they got the messages in the stream.
- GOOSE works naturally only within a LAN (multicast; no destination address)

Did GOOSE arrive at destination?

Publisher-subscriber exchange is unconfirmed service, backed up by:
- Constant repetition.
- Real-time updating of contents.
- Redundancy in LAN and relaying architecture.
- Monitoring and alarming by subscriber IEDs that fail to receive publisher’s GOOSE.

Overview of GOOSE messaging

Adaptive rate of GOOSE message transmission:

- Time values are examples in standard – manufacturers vary.
- Heartbeat reports values during quiescent times:
 - Communications monitoring by all subscribing relays.
 - Update of latest status for any subscribing IED that was just turned on.
- Modern LAN with Ethernet switches & proper traffic design handles the message burst even for a worst-case power system fault event.

GOOSE packet rates

- SEL example, set 1 s heartbeat:

<table>
<thead>
<tr>
<th>Message number</th>
<th>Interval from previous, ms</th>
<th>Time mark, ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/A</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>124</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>252</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>508</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>1 s</td>
</tr>
</tbody>
</table>

- GE UR example:
Analog GOOSE messaging

- **Concept**: send analog values with same millisecond exchanges as for status or control points.
- **Accelerating change**: events defined by settable measurement deadband.
- **Multiple analog values**: in one GOOSE packet; can also combine with binaries in same packet.
- **Any analog or binary change**: accelerates GOOSE.

Products today:
- Send analog values at a fixed slower rate – 100 ms or 250 ms – not that useful for relaying.
- Some will send values at rate driven by status points in message, but analogs are just repeated – values actually updated only every 100 to 500 ms.
- Some can publish **synchrophasor values**, but only at a rate of 2 to 4 per second (GE and SEL) - synchrophasor time tags in packets.
- GOOSE time tag – **not the same** as synchrophasor time tag, which is another analog value in the packet.
- This GOOSE is too slow for most WAMPAC – use 90-5.

Speed of GOOSE messaging

GOOSE message control can be **faster than a wired connection!**

- A wired trip signal goes through:
 - The relay processor output program loop delay.
 - Output delay of hardware interface to wires.
 - Input debounce filter delay of receiving relay.
 - Signal waits milliseconds for the input processing program logic loop to notice it and react.
- GOOSE message bits are sent and read directly between relay processors with microsecond Ethernet delays.
- Products vary – ask manufacturer, or test.

61850-90-1 on interstation GOOSE

- 61850 modeling/semantics & system engineering **across stations**.
- Ethernet LAN/WAN configuration advice in 90-5.
- GOOSE works only on LAN, or equivalent...
- Ethernet between stations:
 - Wideband direct connection of LANs (e.g. via Ethernet card in TDM).
 - Router-configured Tunnel filters and transfers GOOSE packets over WAN.
- Non-Ethernet gateway proxy – e.g. teleprotection device.
Electromechanical lockout switch drawbacks

- Adds 1 cycle operating time.
- Funnels wiring from bus full of breakers into one panel location.
- A lot of wiring.
- Wiring reflects and must adapt to changes in substation topology or relaying philosophy.
- Rarely operates in normal service – some jam and don’t trip.
- Dangerous testing challenge - NERC PRC-005-2 says test it every 6 years.
- Cost added to scheme – deters differential relay use.

Distributed lockout with GOOSE

- Each relay with breaker control keeps track of lockouts in effect, by logic programming.
- Relay lockout states are set by GOOSE from the relay that initiates lockout .
- Then lockouts coordinated/managed by a station computer or centralized lockout monitor & control function.
- Each relay has nonvolatile memory of lockout state – Some use mechanically latched output relays.
- No extra wiring or cost.
- Self monitoring feature eliminates periodic testing.
- As fast as direct tripping.
- See 2009 NETAWorld article by Myrda, Donahoe, Udren for design example.

Continuous end-to-end monitoring

End-to-end check of GOOSE communications:
- The transformer relay publishes a GOOSE message including a bus breaker trip bit
- Normal-state message (do not trip) is generated every second by DSP in transformer relay.
- Passed to the communications processor.

Ability to trip is monitored

- Passed through Ethernet controller to fiber, then to switch.
- Switch passes message to subscriber bus relay port.
- Communications processor of bus relay passes no-action message to bus relay DSP.
- Bus relay alarms if no-action subscribed GOOSE disappears.
- Wires cannot check themselves this completely!
- Alarms for configuration errors.
Redundant station bus for IEC 61850 GOOSE messaging

- No single point of failure within each of dual redundant LANs.
- Use relay primary and failover optical Ethernet ports.
- Dual switches and paths for GOOSE messages.

Ethernet switches for substation LAN

- Use optical fibers everywhere for reliable high-speed data flow during faults or switching in substation environment.
- Ethernet switches carry protection traffic and become relaying components —
 - Protection engineers will become more familiar with their design and use.
 - Switches will isolate zones and redundant systems.
 - Substation-hardened switches have been available – conform to IEEE 1613 class 2.
- Relaying and IT experts must learn more about each other’s needs and problems.
- Wide area GOOSE – use hardened routers and cyber security implementations (e.g., VPN).

Management of LAN based control systems

Settings management is critical

- Microprocessor relays *already* had lots of settings to configure functions & replace old relay panel wiring.
- With LAN control, inter-relay control and signaling wired connections are replaced by *more settings*.
 - Tripping, lockout, and tagging tables.
 - Inter-relay high-speed relaying and control messaging.
 - Application logic for GOOSE packet processing – protection, control, monitoring and alarming.
- Uncontrolled setting changes = unknown “moving wires”.
- The untold issue with wiring reduction – *manage this complexity!*
Settings management

- Need a closed-loop business process that initiates and tracks all installation and updating of setting records.
- Communicates with the IEDs themselves (over WAN is future method) to check consistency between the database and the installed settings and firmware.
- Need a convenient way of installing settings within the management system in every use case.
 - Firmware update, maintenance check, operating emergency, relay replacement, etc.
- New software data base tools can connect with tested devices, test equipment, and enforce management processes – OMICRON, EnoServ, IPS, others.

GOOSE conclusions

- Many practical installations of IEC 61850 GOOSE for high speed control.
- Also used for RAS/SPS communications over large areas.
- Relay selection question – is the installation all-61850, or GOOSE with DNP3/Modbus to host? Can relay support both on Ethernet network?
- Biggest design questions:
 - Logic design has control isolation for testing?
 - Are setting templates well protected in a version control system?
 - This is your new wiring...

Sampled Values service for process bus

Goal 4: Replace switchyard wires with a few optical fibers.
- Eliminate conventional cables and surge/EMI pickup.
- Just a few wires left - we still have to get dc & station service power out to the yard.

Process bus

- Voltages, currents, and status sampled near the source and converted directly to Ethernet packet stream.
 - Multiple sample sets per packet for data transmission efficiency.
- Supports trend towards intelligent power apparatus - data gathering & control IEDs installed directly in the power apparatus, even in the factory.
- Reduce field wiring cost.
- Cut wiring losses and burdens.
- Add field signals without new wiring to control house.
- Reduce hazards of CT circuit work in control building.
Switchyard Merging Unit (MU)

- Binary Inputs & Control Outputs
- Ethernet Switch
- Sample timing synchronization

IEC 61850-9-2 Process Bus

- C37.92 OVT
- C37.92 OC-T
- Conventional CTs
- Conventional VTs

IEC 61850-9-2 Frame – generic and flexible

- Can pack multiple sample time value groups, each with many elements, into a single packet at many sampling rates...too much flexibility!

9-2 LE (Lite Edition) Implementation Guideline

- Fixed sampling rates of 80 or 256 samples per power cycle at 50 or 60 Hz.
- Fixed data frame format.
- Merging unit must be time synchronized with a separate 1pps fiber signal piped around the station.
 - Shared timing signal is a point of station-wide vulnerability.

IEC 61850-9-2 LE Data Set

- Frame check sequence
- Frame check sequence
- Frame check sequence
Unified substation-wide LAN using 9-2 LE

Chopping up the ring for redundancy

- 9-2 LE zones of protective relaying share merging units & LANs.
- Relay engineers are used to separating zones of protection for reliability & limiting single point failure effects.
- Another way to apply MUs:
 - Dedicated MU function for each zone, each location, and System A or System B – full redundancy and isolation.
 - This takes more MUs equipment but separates zones.
 - Can we make a low cost robust MU?

Another direction – 61850-9-2, but not 9-2 LE

- GE Multilin introduced HardFiber® process bus system.
- Uses 61850-9-2 sampled values format for process data flow to relays.
- Uses 61850-8-1 GOOSE messaging downward from relay for sampling synchronization and control – instead of shared fiber with 1 pps running around to all MUs as in 9-2 LE.
- Low-cost MU function implementation.
- Technically helpful (author’s opinion) architecture solution that addresses unified process bus application concerns:
 - Isolation of protection zones.
 - Isolation of redundant systems.
 - Works with today’s GE UR relays.
 - Each relay drives its own data sampling, as it does conventionally.
 - Tracks system frequency and avoids distance relay polarizing problems.
 - Design includes solutions to installation efficiency and testing issues.

GE HardFiber® process bus system

- Weatherproof Brick® mounts on apparatus; has four mini merging units inside – GE calls them cores.
- Connect to relays in control house via factory fiber assemblies and weatherproof connectors.
GE HardFiber® components

- Indoors:
 - Cross connect panel.
 - Fibers to/from relays.
 - Power from panel to remote Brick via HardFiber cable.
- Flexible patching of Brick MU to multiple GE UR relays.

HardFiber interoperability with other vendors?

- ABB, Siemens, Alstom Grid, SEL used 9-2 LE.
- 9-2 LE is an implementation guideline, not part of 61850 standard, but GE signed it with the others.
- Brick cannot work in a 9-2 LE system & vice versa.
- What about multiple vendors and interoperability of 61850?
- Friction and confusion in the marketplace – setback!

Coming - a way out of the impasse!

- IEC 61869-9 uses 61850-9-2 and chooses specific options – tonly wo sampling rates, standard frames, etc.
 - More limited than 9-2 LE – fewer vendor options.
- Eliminates 1 pps fiber time synchronization.
- Uses IEEE 1588 precision timing protocol (PTP) on existing Ethernet connection to synchronize sampling.
- Every vendor can adapt products they have - GE and others are adapting.
- MUs and relays interoperate, with flexible architecture choices – from isolated zones to station/process bus.

Ngrid UK 400 kV process bus demo

- Switchbox for MU replacement.
Switchyard maintenance solution!

Get much of the benefit now

- A cost effective interim solution – extend the station bus into the switchyard for status and control I/O.
- Put a remote binary I/O relay (e.g. SEL 451, GE UR C90) in the switchyard for all status and control via GOOSE.
- Wire only the CTs and CVTs back to the control house as we do today.
- Eliminate 70-80% of switchyard wiring.
- Anyone can do it right now.

New cyber secure synchrophasor streaming – TR 61850-90-5

Goal 5: Collect and concentrate data for WAMPAC.

Wide area network (WAN) services use 61850 principles
- Sampled Value or GOOSE publish/subscribe across the Ethernet WAN – Routable SV (R-SV) and Routable GOOSE (R-GOOSE).
- Adds layer 3 transport – UDP/IP unicast/multicast (unconfirmed efficient stream of data packets – not TCP/IP)
- Subscribers can search for publishers, & manage WAN routes dynamically using Internet Group Management Protocol (IGMP) V.3, a standard IT router service.

New cyber secure synchrophasor streaming – TR 61850-90-5

- **New - a big deal** – end-to-end authentication in the packet!
 - IT standard SHA-2 authentication hash code - computed in real time.
 - Needs new PMU or relay processors to compute authentication hash code for every packet, authenticate incoming packets.
 - IT standard Group Domain of Interpretation (GDOI) security key distribution/management.
- Packet encryption specification (can be done in router or in PMU/relay).
- Valuable for all control functions.
Using 61850 services on the LAN

Understand design impact of specific 61850 services.

- Client-server exchanges of standard defined objects for metering, status, control, and IED configuration.
 - Metering and status via polling or report-by-exception.
 - *No visible impact on installation* – benefit is drive to easy engineering and maintenance.
 - DNP3 or 60870-5 can perform similar role with familiar polling & manual point configuration lists.
- GOOSE messaging gets rid of conventional control wiring among relays and IEDs – *design commitment; visible change*.
- LAN can carry mixed traffic – e.g. DNP3 metering and status, plus GOOSE for wiring elimination.
 Many potential users don’t realize this.

Advice to new 61850 users

- Develop a new standard in laboratory facility:
 - Get bugs out.
 - Get maintenance & user buy-in & training.
 - Have platform for testing firmware/hardware versions.
 - Facility for post-mortem analysis & field event debugging.
 - Showplace for sponsoring managers and the industry
- Get SCL tool and hardware/software product vendors to take responsibility for successful integration
 - Training with your products in your lab
 - They stay with you to fix problems and bugs

Advice to new 61850 users

- Include functional monitoring of communications in your applications programming
 - Latency, lost packet counts & path outage statistics
 - Applications alarm if they stop exchanging critical data – as with current differential line protection.
 - Condition monitoring for NERC PRC-005-2/3
- Design I/O facilities specifically for testing and troubleshooting
 - Test switches to engage test modes.
 - Alarms for test modes left by technicians
 - Functional test of critical functions built in (as for RAS annual test) until 61850 Ed. 2 testing is more proven.

Questions?

eudren@quanta-technology.com
(412) 596-6959