Microgrid Controller Hardware-in-the-Loop Demonstration Platform

February 23, 2016

Erik Limpaecher
Test Coverage & Fidelity of New Power Distribution + Control Projects?

- Example: NYU-Poly study
- Validated 3φ time-domain model of Flushing network
- Analyzed performance of smart grid concepts
 - Automatic reconfiguration and self-healing capabilities
 - Auto-loop operations; required switching speed
 - Overcurrent, equipment malfunctioning, switch failures
 - Effect of backfeeding

<table>
<thead>
<tr>
<th>Overall Power Demand</th>
<th>400 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeder breakers</td>
<td>30</td>
</tr>
<tr>
<td>Feeder/Tie/Subnetwork switches</td>
<td>73</td>
</tr>
<tr>
<td>Auto-loops</td>
<td>2</td>
</tr>
<tr>
<td>Transformers</td>
<td>980</td>
</tr>
<tr>
<td>Network protectors</td>
<td>871</td>
</tr>
<tr>
<td>Primary feeder and secondary grid sections</td>
<td>6,796 + 17,458</td>
</tr>
<tr>
<td>Aggregated loads</td>
<td>7,780</td>
</tr>
</tbody>
</table>

Computational burden:
- Intel Core i7 CPU 975 Processor at 3.33 GHz with 24 GB RAM
- Simulations with EMTP-type software
- Integration step of 50 µs to solve a 650 ms scenario

Manual preprogrammed scenarios based on expected switching sequences
- Good test coverage or fidelity? –

16-hour wait per 650 ms scenario
– Good coverage possible? –

How Do We Accelerate Microgrid Deployment?
Reduce Integration Time, Cost, & Risk

• High NRE for each project
 – One vendor’s microgrid controller quote: $1M starting price

• “Vaporware”
 – No standard list of functions or performance criteria
 – Difficult to validate marketing claims

• Risk of damage to expensive equipment
 – One utility-deployed microgrid: 1 year of controls testing, damaged a 750 kW transformer, required significant engineering staff support

• Interconnection behavior unknowable to utility engineers
 – Controls are implemented in proprietary software
 – Microgrids are a system of systems: Exhibit emergent behavior

• No standards verification
 – IEEE P2030.7 and P2030.8 standards are on the horizon
Microgrid Controller Hardware-in-the-Loop (HIL) Testbed

Types of Controller Testbeds

Legend:
- G: generator
- Inv: battery or solar inverter
- C: device controller
- μC: microgrid controller
- DMS: distribution management system controller
- Power grid
- High-bandwidth AC-AC converter
- Simulation or emulation boundary
- Hardware
- Virtual (simulated or emulated)

Image: Florida State Univ. CAPS
Power Simulation: Flight Simulator Analogy

Legend
- G: generator
- Inv: battery or solar inverter
- C: device controller
- μC: microgrid controller
- DMS: distribution management system controller
- Power grid
- High-bandwidth AC-AC converter
- Simulation or emulation boundary
- Hardware
- Virtual (simulated or emulated)

Matlab SimPowerSystems simulation (not real-time)
Actual device and microgrid controller with real-time simulation
Real-time simulation coupled with power electronics testbed
Low-power microgrid testbed
Actual microgrid

Simulation
Controller HIL
Power HIL
Power Testbed
Full System

Legend
- G: generator
- Inv: battery or solar inverter
- C: device controller
- μC: microgrid controller
- DMS: distribution management system controller
- Power grid
- High-bandwidth AC-AC converter
- Simulation or emulation boundary
- Hardware
- Virtual (simulated or emulated)

- Slow PC simulation, small screen, keyboard/mouse inputs
- Actual plane cockpit, advanced simulation, wide field-of-view
- Moving cockpit, field-of-view visualization
- Trainer aircraft
- Passenger-carrying aircraft

Matlab SimPowerSystems simulation (not real-time)
High-fidelity Real-time Simulation

- Microgrid controller HIL simulates in real-time at sub-cycle timescales
 - Useful for steady-state, dynamic, and transient analyses

- HIL simulation rate: 80 μS (12.5 kHz)
- One AC cycle: 16.7 ms (60 Hz)
- User display update rate: 66.7 ms (15 Hz)
- Load profile & irradiance data: 1 s (1 Hz)
- Power converter controller response: 0.5-1 ms (1-2 kHz)
- Power system fault transients: 0.3-1 ms (1-3 kHz)
- Genset protection functions: 0.1-0.2 s (50-100 Hz)
- Secondary control: 0.1-1 s (1-10 Hz)
- Genset protection functions: 0.1-0.2 s (50-100 Hz)

Time (seconds)

10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0}
Construction of Detailed Microgrid Test Feeder Model

1. One-line diagram
2. Netlist
3. MATLAB data connectivity diagram
4. Simulink model
Elements of the Microgrid Controller HIL Platform

Hardware-in-the-Loop Simulator

Simulated Microgrid Feeder

Load the feeder model into the HIL simulator “target”
Elements of the Microgrid Controller HIL Platform

Hardware-in-the-Loop Simulator

Simulated Microgrid Feeder and Devices

Create detailed models of the DER devices
Elements of the Microgrid Controller HIL Platform

Add load profiles & other test stimuli; assign load priorities

Test Stimuli

Hardware-in-the-Loop Simulator

Simulated Microgrid Feeder and Devices

Loads
Motors
Irradiance
Grid Status

Real Power
Reactive Power

Time (seconds)

Kw / kVAr
Elements of the Microgrid Controller HIL Platform

Simulated Device Controllers

- Relay Protection Functions
- Inverter Control
- Genset Primary & Secondary Control
- Bidirectional Power Converter Control

Hardware-in-the-Loop Simulator

- Simulated Microgrid Feeder and Devices
- Load B03 Priority
- Gen 4 MVA
- Bat 4 MVA
- M 250 hp 460 V

Test Stimuli

- Loads
- Motors
- Irradiance
- Grid Status

Implement DER control algorithms
Elements of the Microgrid Controller HIL Platform

...or add commercial controllers as hardware-in-the-loop

Test Stimuli
Integrate a microgrid controller.
Elements of the Microgrid Controller HIL Platform

Integrate additional microgrid controllers
- Vendor capability demonstration
- Performance comparison

Hardware-in-the-Loop Simulator

Physical Device Controllers
- SEL 787 Relay

Simulated Device Controllers

Acme Energy PV Inverter Controller

Woodward easYgen 3000 Genset Controller

Eaton Microgrid Controller

PV
3.5 MW

Gen
4 MVA

Load B01 Interruptible

Load B02 Critical

Bat
4 MVA

Bat

M
250 hp
460 V

R1
R2
R3
R4
R5
R6
R7
R8

Test Stimuli

Loads

Motors

Irradiance

Grid Status
Elements of the Microgrid Controller HIL Platform

Add data visualization, collection, and post-processing
- Real-time operation
- Performance analysis
Microgrid Controller HIL Platform

Physical Device Controllers

Schneider Microgrid Controller

Woodward easYgen 3000 Genset Controller

Simulated Device Controllers

Hardware-in-the-Loop Simulator

Load B03 Priority

R1

R2

R3

R7

R8

PV 3.5 MW

Gen 4 MVA

Bat 4 MVA

M 250 hp 460 V

Bat

Real-time Data Visualization

Data Collection & Post-processing

Test Stimuli

Loads

Motors

Irradiance

Grid Status
Vision for the Microgrid Controller HIL Platform

- **Development Platform**
 - Application of real-time sim. technology to power engineering
 - Cost-effective engineering and project development
 - Enables performance evaluation of commercial products
 - *Demonstrations at Mass. Microgrid Controls Symposium*

- **Deployment Platform**
 - Perform controller and systems integration
 - Pre-commission testing of advanced power system projects
 - Test edge conditions and exercise the actual device controllers
 - Technical risk reduction and confidence building for the utility
 - *Project enabler: South Boston microgrid*

- **Standards Test Platform**
 - Industry-standard test platform for new power systems
 - *Test against IEEE P2030.8 standard and utility requirements*

- **Electric Power Controls Consortium (EPCC) Shared Repository**
Demo-centric Tech. Evaluation
U.S. Marine Corps’ ExFOB Example

In-kind integration manhours and $

Anonymized test results, Maturity status of commercial equipment

Independent Laboratory

Vendors

Realistic testbed; 3rd party validation

Procurement specs

High-level visibility

ExFOB 2013 – Twentynine Palms

Government Program Offices

Procurement specs

Independent Laboratory

In-kind integration manhours and $

Anonymized test results, Maturity status of commercial equipment

Government Program Offices

Procurement specs

High-level visibility

ExFOB 2013 – Twentynine Palms
Anonymized Results of Demonstration Runs

Load-not-Served (kWh) while Islanded*

Voltage Profile (sec exceeding ±5%)

* Vendor #2 islanded one minute earlier than Vendor #1, resulting in the higher demand during islanded operation.
Anonymized Results of Demonstration Runs (cont.)

Energy Consumption

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Fuel Used (gal.)</th>
<th>Energy Imported (kWh)</th>
<th>Energy Exported (kWh)</th>
<th>Fuel Used (gal.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendor #1</td>
<td>5.7</td>
<td>317</td>
<td>14</td>
<td>5.0</td>
</tr>
<tr>
<td>Vendor #2</td>
<td>6.3</td>
<td>272</td>
<td>38</td>
<td>5.9*</td>
</tr>
<tr>
<td>Difference</td>
<td>+11%</td>
<td>-14%</td>
<td>+170%</td>
<td>+18%</td>
</tr>
</tbody>
</table>

Vendor #2 islanded one minute earlier than Vendor #1, resulting in the higher demand during islanded operation.
Outline

- Introduction to Controller Hardware-in-the-Loop
- Orientation to the HIL Platform Demonstration
- Way Ahead
Example Load (B011)

- Peak kW: 879
- Min kW: 319
- Peak kVAR: 832
- Min kVAR: 382
- Nominal Voltage: 460 V

1 work week compressed into 2 hours
Microgrid Controller
Hardware-in-the-Loop Platform

- Firewall and Network Switch
- Console
- Woodward easYGens
- Interface Box
- Monitoring I/O
 - Analog & Digital
- Opal-RT HIL Target
- MIT Lincoln Lab Windows Server
- Power Supply

Two integrated Woodward easYgen 3000 genset controllers
HIL Platform Block Diagram

Vendor-supplied equipment

Microgrid Controller – Unit Under Test

Connection to HIL Demonstration Platform

Modbus TCP

Firewall and Network Switch

Prime Mover Device Controller Woodward EasyGen 3500 #1

Prime Mover Device Controller Woodward EasyGen 3500 #2

Lantronix Intellibox 2100 TCP to RS485

Modbus TCP

Lantronix Intellibox 2100 TCP to RS485

Interface Box

Simulated 1 MVA Genset

Simulated 4 MVA Genset

Simulated Battery Storage & Power Converter

Simulated Battery Power Converter Controller

OPAL-RT HIL 5607

Simulated PV Inverter

Simulated PV & Inverter

Simulated Protection Controller

Simulated PV Inverter Controller

Simulated Relays, Breakers, and Telemetry

Simulated Grid and One Line Diagram of the Test Feeder (~18 Buses and 17 lines)
Device Address List

<table>
<thead>
<tr>
<th>Device</th>
<th>IP Address</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MVA Genset Controller</td>
<td>192.168.10.35</td>
<td>-</td>
</tr>
<tr>
<td>4 MVA Genset Controller</td>
<td>192.168.10.36</td>
<td>-</td>
</tr>
<tr>
<td>Storage Controller</td>
<td>192.168.10.40</td>
<td>-</td>
</tr>
<tr>
<td>PV Controller</td>
<td>-</td>
<td>No interface</td>
</tr>
<tr>
<td>Relay 1</td>
<td>10.10.45.101</td>
<td>Point of Common Coupling</td>
</tr>
<tr>
<td>Relay 2</td>
<td>10.10.45.102</td>
<td>Serves & senses sub-panel B021</td>
</tr>
<tr>
<td>Relay 3</td>
<td>10.10.45.103</td>
<td>Serves & senses sub-panel B012</td>
</tr>
<tr>
<td>Relay 4</td>
<td>10.10.45.104</td>
<td>Serves & senses load B001 + genset1</td>
</tr>
<tr>
<td>Relay 5</td>
<td>10.10.45.105</td>
<td>Serves & senses B022</td>
</tr>
<tr>
<td>Relay 6</td>
<td>10.10.45.106</td>
<td>Serves & senses loads B009-B011</td>
</tr>
<tr>
<td>Relay 7</td>
<td>10.10.45.107</td>
<td>Serves & senses genset 1</td>
</tr>
<tr>
<td>Relay 8</td>
<td>10.10.45.108</td>
<td>Serves & senses genset 2</td>
</tr>
<tr>
<td>Relay 9</td>
<td>10.10.45.109</td>
<td>Serves & senses load B009</td>
</tr>
<tr>
<td>Relay 10</td>
<td>10.10.45.110</td>
<td>Serves & senses load B010</td>
</tr>
<tr>
<td>Relay 11</td>
<td>10.10.45.111</td>
<td>Serves & senses load B004</td>
</tr>
<tr>
<td>Relay 12</td>
<td>10.10.45.112</td>
<td>-</td>
</tr>
<tr>
<td>Relay 13</td>
<td>10.10.45.113</td>
<td>Serves & senses battery</td>
</tr>
<tr>
<td>Relay 14</td>
<td>10.10.45.114</td>
<td>Serves & senses load B015 + battery</td>
</tr>
<tr>
<td>Relay 15</td>
<td>10.10.45.115</td>
<td>Serves & senses load B013</td>
</tr>
<tr>
<td>Relay 16</td>
<td>10.10.45.116</td>
<td>Serves & senses load B014</td>
</tr>
<tr>
<td>Relay 17</td>
<td>10.10.45.117</td>
<td>Serves & sense PV</td>
</tr>
<tr>
<td>Motor Relays</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simulated Battery and PV Systems

- Four quadrant power source with sub-cycle transient accuracy, modeled in real time
 - Boost rectifier average model
 - Three phase PLL
 - D and Q axis current PIDs respond to power commands
- PV MPP tracker
- Inverter physical limits monitored by fault controller

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Power Command</td>
<td>kW</td>
<td>(-) discharge; (+) charge</td>
</tr>
<tr>
<td>Reactive Power Command</td>
<td>kVAR</td>
<td>(+) capacitive; (-) inductive</td>
</tr>
<tr>
<td>Modbus Enable</td>
<td>0/1</td>
<td>1 to indicate active Modbus connection.</td>
</tr>
<tr>
<td>Fault Status</td>
<td></td>
<td>Phase A Over Current</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phase B Over Current</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phase C Over Current</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DC Link Overvoltage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLL Loss of Sync</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vrms out of spec</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Battery Empty</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Battery Full</td>
</tr>
<tr>
<td>Battery SoC</td>
<td>%</td>
<td>Battery start at 50%</td>
</tr>
<tr>
<td>Enable</td>
<td>0/1</td>
<td>Cycle to clear any faults.</td>
</tr>
</tbody>
</table>

Register list for battery system device controller
Simulated Genset Block

<table>
<thead>
<tr>
<th></th>
<th>1 MW Genset</th>
<th>4 MW Genset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer / Model</td>
<td>CAT C32</td>
<td>CAT C175-20</td>
</tr>
<tr>
<td>Rating (kVA)</td>
<td>1,000</td>
<td>4,000</td>
</tr>
<tr>
<td>Power Factor</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Voltage (V)</td>
<td>480</td>
<td>13,800</td>
</tr>
<tr>
<td>Frequency (Hz)</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Speed (RPM)</td>
<td>1800</td>
<td>1800</td>
</tr>
<tr>
<td>Minimum Output Power</td>
<td>25kW</td>
<td>100kW</td>
</tr>
<tr>
<td>Startup Time</td>
<td><10 sec</td>
<td><15 sec</td>
</tr>
</tbody>
</table>

Genset ratings and characteristics

Synchronous Machine, Governor, and AVR Models
Device Controller Integration: Woodward easYGen 3000

Legend
- M Motor
- G Generator
- GCB Generator Circuit Breaker
- MCB Mains Circuit Breaker
- Signal voltage transformer
- Voltage-controlled current source

Genset Simulation in HIL

Interface Box
Simulated Relay:
SEL-787 Transformer Protection Relay

Protection Function

<table>
<thead>
<tr>
<th>ANSI 50</th>
<th>Inst. overcurrent</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI 51</td>
<td>Avg. overcurrent</td>
</tr>
<tr>
<td>ANSI 27</td>
<td>Undervoltage</td>
</tr>
<tr>
<td>ANSI 59</td>
<td>Overvoltage</td>
</tr>
<tr>
<td>ANSI 25</td>
<td>Synchronism-check</td>
</tr>
<tr>
<td>1547 Tables 1&2</td>
<td>Abnormal V & f</td>
</tr>
<tr>
<td>Gen. Synch</td>
<td>Generator synch</td>
</tr>
<tr>
<td>ANSI 52</td>
<td>AC Circuit Breaker</td>
</tr>
</tbody>
</table>
Demonstration against ORNL/EPRI Microgrid Functional Use Cases

<table>
<thead>
<tr>
<th>Functional Use Case</th>
<th>Description</th>
<th>Demonstration</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-1 Frequency Control</td>
<td>Selection of grid-forming, -feeding, and -supporting energy sources to maintain stability; sub-second control to maintain stable frequency while islanded</td>
<td>The microgrid controller selects from among the two gensets and battery DERs.</td>
</tr>
<tr>
<td>F-2 Voltage Control</td>
<td>Regulate voltage at the microgrid point of common coupling</td>
<td>No demo</td>
</tr>
<tr>
<td>F-3 Intentional Islanding</td>
<td>Planned disconnect from area electric power system (AEPS)</td>
<td>Islanding will be initiated by the microgrid controller</td>
</tr>
<tr>
<td>F-4 Unintentional Islanding</td>
<td>Fast disconnect from AEPS upon large disturbance to provide continuous supply to loads</td>
<td>No demo due to battery and PV inverter controller PLL instability</td>
</tr>
<tr>
<td>F-5 Transition from Islanded to Grid-tied</td>
<td>Resynchronize and reconnect to AEPS</td>
<td>Initiated by microgrid controller once generators and grid synchronize</td>
</tr>
<tr>
<td>Functional Use Case</td>
<td>Description</td>
<td>Demonstration</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>F-6(a) Energy Management: grid-tied</td>
<td>Coordinate generation, load, & storage dispatch, to participate in utility operation and energy market activities</td>
<td>The microgrid controllers target a power export value for a defined period, and should also shave peak demand.</td>
</tr>
<tr>
<td>F-6(b) Energy Management: islanded</td>
<td>Coordinate generation, load, & storage dispatch, to optimize islanded operation (fuel consumption, islanding duration)</td>
<td>Fuel consumption and service of critical and priority loads are measured during islanded operation.</td>
</tr>
<tr>
<td>F-7 Microgrid Protection</td>
<td>Configure protection devices for different operating conditions</td>
<td>DER and relay protection are implemented, but are not configurable.</td>
</tr>
<tr>
<td>F-8 Ancillary Services: regulation</td>
<td>Provide frequency regulation, generation reserves, reactive power support, and demand response to AEPS</td>
<td>Demand response to hit a target power export value; Reactive power support to maintain unity power factor at PCC</td>
</tr>
<tr>
<td>F-9 Microgrid Blackstart</td>
<td>Restore islanded operation after a complete shutdown</td>
<td>Likely limited by present genset control capabilities</td>
</tr>
<tr>
<td>F-10 User Interface, Data Collection</td>
<td>Organize, archive, and visualize real-time and non-real-time data</td>
<td>Data collection and visualization performed by MIT-LL, not μC</td>
</tr>
</tbody>
</table>
15-minute Demonstration Sequence

Load Profile

- Total Real Power (kW)
- Total Reactive Power (kVAR)
- Interruptible Loads (kW)
- Power Export (kW)
- Power Factor (p.u.)

PV Array Output

Power (kW)

Power Factor

Grid Status

0=Off
1=On

Time (minutes)
Heads-up Display (screen 1)
Heads-up Display (screen 2)
Outline

• Introduction to Controller Hardware-in-the-Loop
• Orientation to Today’s Demonstration
• Way Ahead
Vision for Eventual HIL Capabilities

Host Utility’s Distribution Management System (DMS)

Actual Controllers for DER Deployed in the Microgrid

Multiple Real-time Digital Sim. Platforms

Validated Controller Models

Vendor-validated Device Models

RTDS

Opal-RT

Typhoon HIL

National Instruments

Multiple Standard Test Feeders

Test Stimuli per IEEE P2030.8 and Host Utilities

Industry-standard Test Platform

Microgrid Controller Under Test
Vision for Power Systems HIL & Shared Repository

- **1 - Development Platform**
 - Application of real-time sim. technology to power engineering
 - Cost-effective engineering and project development
 - Enables performance evaluation of commercial products
 - *Demonstrations at Mass. Microgrid Controls Symposium*

- **2 - Deployment Platform**
 - Perform controller and systems integration
 - Pre-commission testing of advanced power system projects
 - Test edge conditions and exercise the actual device controllers
 - Technical risk reduction and confidence building for the utility
 - *Project enabler: South Boston microgrid*

- **3 - Standards Test Platform**
 - Industry-standard test platform for new power systems
 - *Test against IEEE P2030.8 standard and utility requirements*

- **4 - Electric Power Controls Consortium (EPCC) Shared Repository**
Elements of the EPCC Shared Repository

Microgrid Test Repository
- **Microgrid Test Feeders**
 - Netlists

Controller-in-the-Loop Repository
- **Interface Circuitry for Device Controllers**
 - Circuit schematics, bills of materiel
- **Interface Code for Device Controllers**
- **Communications Interface Translation Code**
 - Modbus TCP
 - IEC 61850
 - GOOSE
 - MMS

HIL Platform Repository
- **HIL Target Platform Conversion Scripts**
 - Targets: OPAL-RT, Typhoon HIL, RTDS, NI, and others
- **Validated Device Models**
 - Motor-generators, power converters / inverters, and relays
- **Validated Device Controller Software**
 - Genset controllers, power converter controllers, relay protection functions
Potential Applications

• Integration of control systems
 – Microgrid controller testing; integrate with DER & IED sub-systems
 – Distribution management system testing and integration
 – Transmission operator dispatch integration and ancillary services testing
 – Volt VAR control systems testing

• Protection system testing, including
 – Evaluation of automation sequences
 – Development of automated self-healing systems
 – Feeder sectionalization studies

• Prime mover DG controller testing
 – Evaluating stability issues due to DG dynamics

• Anti-islanding and blackstart testing
Potential Applications (cont.)

• DER controls behavior testing
 – DG penetration studies
 – Anti-islanding / intentional islanding controls studies

• Detailed power systems analysis
 – Evaluating electromagnetic transients due to switching or faults
 – Assessment of symmetrical and non-symmetrical events
 – Evaluation of transient overvoltage and resonance

• Micro-PMU (phasor measurement units) studies

• Implementation and evaluation of smart grid concepts

• Communications testing and integration

• Other distribution-level studies
Acknowledgements

Sponsors

Sarah Mahmood, DHS S&T
Jalal Mapar, DHS S&T
Dan Ton, DOE OE
Ernest Wong, DHS S&T

Collaborators

Vijay Bhavaraju, Eaton
Mark Buckner, ORNL
Fran Cummings, Peregrine Group
Babak Enayati, National Grid
Mark Evlyn, Schneider
Galen Nelson, MassCEC
Luis Ortiz, Anbaric
Jim Reilly, Reilly Associates
Travis Sheehan, BRA
Michael Starke, ORNL
Tom Steber, Schneider
Brad Swing, City of Boston

MIT Lincoln Laboratory

Division 7 – Engineering
Division 4 – Homeland Protection
Division 5 – Cyber Security
Division 6 – Communications
Security Services Department
Contact Information

Erik Limpaecher
Assistant Group Leader
Energy Systems, Group 73

781-999-2237 (cell)
781-981-4006 (lab)
elimpaecher@ll.mit.edu
Power Systems HIL Platform